Q1 Below is the graph of a force function $F(x)$ (in lbs).

(a) How much work is done by the force in moving an object from $x=0$ to $x=3$ ?
(b) How much work is done by the force in moving an object from $x=0$ to $x=5$ ?

Q2 Find the derivatives of the following functions
(a) $f(x)=\left[\tan ^{-1} x\right]^{\ln (2 x)}$, find $f^{\prime}(x)$
(b) $f(x)=\pi^{\sin ^{-1}(\sqrt{x})}$, find $f^{\prime}(x)$
(c) $f(x)=x^{2}+3 \sin x+1$, find $\left(f^{-1}\right)^{\prime}(1)$

Q3 Determine whether the following limits exist or not. Find the limit if it exists.
(a)

$$
\lim _{\theta \rightarrow \pi / 2} \frac{1-\sin \theta}{1+\cos (2 \theta)}
$$

(b)

$$
\lim _{x \rightarrow+\infty} \sqrt{x} \cdot e^{-x / 2}
$$

(c)

$$
\lim _{t \rightarrow 0^{+}} t \cdot \tan ^{-1}(1 / t)
$$

Q4 Evaluate the following integrals
(a)

$$
\int \sin (3 t) \cdot(2 t+1) \mathrm{d} t
$$

(b)

$$
\int_{0}^{\infty} 2^{-x} \mathrm{~d} x
$$

(c)

$$
\int \frac{5}{\sqrt{9-25 x^{2}}} \mathrm{~d} x
$$

Q4 Evaluate the following integrals.
(a)

$$
\int \frac{x^{2}}{\left(x^{2}+1\right)^{5 / 2}} \mathrm{~d} x
$$

(b)

$$
\int_{8}^{\infty} \frac{10}{x^{2}-4 x-21} \mathrm{~d} x
$$

Q5 The solid is generated by revolving the curve $y=\cos x-1$ for $0 \leq x \leq \pi / 2$ about the axis $y=1$.
(a) Sketch the solid and set up an integral for the volume of it.
(b) Find the volume of the rotating solid.

Q6 A tank (shown below) is full of oil weighing $10 \mathrm{lb} / \mathrm{ft}^{3}$. Find the work required to pump the oil out of the spout. The base is a $10 \times 6 \sqrt{3}$ rectangle. The back end is a $6 \times 10$ rectangle, the two sides are right triangle with height 6 , base $6 \sqrt{3}$ and hypotenuse 12 (all in ft). The spout is 6 ft from the base.


## Integrals

- Volume: Suppose $A(x)$ is the cross-sectional area of the solid $S$ perpendicular to the $x$-axis, then the volume of $S$ is given by

$$
V=\int_{a}^{b} A(x) d x
$$

- Work: Suppose $f(x)$ is a force function. The work in moving an object from $a$ to $b$ is given by:

$$
W=\int_{a}^{b} f(x) d x
$$

- $\int \frac{1}{x} d x=\ln |x|+C$
- $\int \tan x d x=\ln |\sec x|+C$
- $\int \sec x d x=\ln |\sec x+\tan x|+C$
- $\int a^{x} d x=\frac{a^{x}}{\ln a}+C \quad$ for $a \neq 1$


## - Integration by Parts:

$$
\int u d v=u v-\int v d u
$$

## Derivatives

- $\frac{d}{d x}(\sinh x)=\cosh x \quad \frac{d}{d x}(\cosh x)=\sinh x$
- Inverse Trigonometric Functions:

$$
\begin{aligned}
\frac{d}{d x}\left(\sin ^{-1} x\right) & =\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left(\csc ^{-1} x\right) & =\frac{-1}{x \sqrt{x^{2}-1}} \\
\frac{d}{d x}\left(\cos ^{-1} x\right) & =\frac{-1}{\sqrt{1-x^{2}}} & \frac{d}{d x}\left(\sec ^{-1} x\right) & =\frac{1}{x \sqrt{x^{2}-1}} \\
\frac{d}{d x}\left(\tan ^{-1} x\right) & =\frac{1}{1+x^{2}} & \frac{d}{d x}\left(\cot ^{-1} x\right) & =\frac{-1}{1+x^{2}}
\end{aligned}
$$

- If $f$ is a one-to-one differentiable function with inverse function $f^{-1}$ and $f^{\prime}\left(f^{-1}(a)\right) \neq 0$, then the inverse function is differentiable at $a$ and

$$
\left(f^{-1}\right)^{\prime}(a)=\frac{1}{f^{\prime}\left(f^{-1}(a)\right)}
$$

## Hyperbolic and Trig Identities

- Hyperbolic Functions

$$
\begin{array}{ll}
\sinh (x)=\frac{e^{x}-e^{-x}}{2} & \operatorname{csch}(x)=\frac{1}{\sinh x} \\
\cosh (x)=\frac{e^{x}+e^{-x}}{2} & \operatorname{sech}(x)=\frac{1}{\cosh x} \\
\tanh (x)=\frac{\sinh x}{\cosh x} & \operatorname{coth}(x)=\frac{\cosh x}{\sinh x}
\end{array}
$$

- $\cosh ^{2} x-\sinh ^{2} x=1$
- $\cos ^{2} x+\sin ^{2} x=1$
- $\sin ^{2} x=\frac{1}{2}(1-\cos 2 x)$
- $\cos ^{2} x=\frac{1}{2}(1+\cos 2 x)$
- $\sin (2 x)=2 \sin x \cos x$
- $\sin A \cos B=\frac{1}{2}[\sin (A-B)+\sin (A+B)]$
- $\sin A \sin B=\frac{1}{2}[\cos (A-B)-\cos (A+B)]$
- $\cos A \cos B=\frac{1}{2}[\cos (A-B)+\cos (A+B)]$

